
 

 

Early algebra: Simplifying equations  
Luis Radford  

Laurentian University, Canada; lradford@laurentian.ca  
Placed within the early algebra research field (Blanton et al., 2017; Cai & Knuth, 2011; Kieran, 
2018; Kilhamn & Säljö, 2019), this article focuses on young students’ understanding of basic 
algebraic ideas around equations. The article seeks to contribute to the field by shedding light on 
Grade 3 students’ meaning-making processes underpinning the simplification of equations and the 
algebraic operations involved. In the first part, I present a theoretical conception of algebraic 
thinking. I also describe two non-alphanumeric semiotic systems that played an important role in the 
students’ dealings with algebra. In the second part, I discuss two episodes of students simplifying 
𝑎𝑥 + 𝑏 = 𝑐𝑥 + 𝑑	equations. 
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Algebraic thinking  
One of the most enduring problems with which mathematics educators have been confronted is the 
problem of characterizing algebra and clarifying what makes it different from arithmetic. Two main 
solutions have been suggested. One consists in equating algebra with the use of letters. The other 
consists in conceiving of algebra as focused on operations rather than on results. While the first 
solution offers a very narrow conception of algebra—impeding teachers from recognizing algebraic 
thinking in activities based on types of mathematical representations different from letters—the 
second one offers a very narrow conception of arithmetic, which becomes demoted to simple 
computation. 

In previous work (Radford, 2014) I have suggested three elements to characterize algebraic thinking:  

(1) Indeterminacy of magnitudes: algebraic thinking involves indeterminate magnitudes. These can 
be unknowns, variables, parameters, etc. 

(2) Denotation: the indeterminate quantities involved must be named or symbolized. This 
symbolization can be carried out in several ways. Alphanumeric signs can be used, but not 
necessarily. The denotation of indeterminate quantities can also be symbolized by means of natural 
language, gestures, unconventional signs, or even a mixture of them.  

3) Analyticity: algebraic thinking (a) calculates/operates with indeterminate magnitudes as if they 
were known and (b) treats the mathematical relations featuring determinate and indeterminate 
magnitudes (equations, formulas, expressions, etc.) in a deductive manner.  

Simplifying equations 
Drawing on the aforementioned conception of algebraic thinking, in what follows, I report on the 
results of a teaching-learning activity in a Grade 3 class (8-9-year-old students). The activity was 
based on the use of two non-alphanumeric semiotic systems: a Concrete Semiotic System (CSS) and 
an Iconic Semiotic System (ISS) through which students could translate simple word-problems into 
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linear equations.1 The CSS is comprised of material objects: a) paper envelopes that each contain the 
same unknown number of cardboard cards; b) cardboard cards, and c) the equal sign. The envelopes 
played the role of unknowns while the card played the role of concrete numbers (constants). The ISS 
is derived from the CSS: it replaces concrete objects with iconic drawings { ,  ,  =, ↑}. The 
additional “arrow” sign replaces actions performed on concrete cards or envelopes of the CSS during 
the process of simplifying equations. The students could substitute the arrow by simple lines 
indicating that a card or envelope (or sets of) are removed. The range of problems that can be 
formulated in natural language and translated into the CSS and ISS is very limited, but it is enough 
to ensure that young students have their first encounter with algebraic thinking. 

The research question that this paper seeks to address is about the identification of the teacher and 
students’ meaning-making processes underpinning the understanding of algebraic techniques of 
isolating the unknown in one-unknown linear equations. Following the methodology of the theory of 
objectification (Radford, 2021), the data analysis involves a multimodal investigation of teaching-
learning activity where students work in small groups and participate in collective discussions.  

In Grade 2 the students started being familiarized with the isolating-the-unknown procedure using 
the CSS (Radford, 2017). At the beginning of the teaching-learning activity that I investigate here 
(which was the first Grade 3 activity on equations), the teacher organized a general discussion around 
the equation 3 + 𝑥 = 7. (Of course, no alphanumeric symbolism, was used in Grades 2 and 3). The 
students discussed various solving procedures: trial and error, comparison of terms (more on this 
below), and the isolating-the-unknown procedure. In Grade 3 the isolating-the-unknown procedure 
was not yet the students’ first choice. The teacher had to ask, referring to what they had learned in 
Grade 2: “What do we mean by isolate? If I tell you, I'd like to isolate the envelope . . . ” Cyr, one of 
the students, answered: “Does that mean like putting it alone?” When the teacher asked Cyr to 
articulate the idea, Cyr went to the blackboard and removed one card after another from each side of 
the equation, showing the procedure. The isolating-the-unknown procedure remained shown with 
actions rather than articulated with words. The teacher rephrased Cyr’s actions: “If you remove one 
[card] on this side, what do you do?” Cyr answered: “I remove another one from there (the other side 
of the equation). Isolating-the-unknown procedure was a key aspect in the systematization of algebra 
conducted by Arab mathematicians in the 8th and 9th centuries (Al-Khwārizmī and others; see Oaks 
& Alkhateeb, 2007). It involves operations with known and unknown magnitudes to simplify 
equations. Mathematicians called these simplifying operations al-gabr and al-muqābala, and it is 
from the former that our modern term algebra borrows its name. By working with Cyr and by 
thematizing actions through language, the teacher strives to enable the students to reach a deeper level 
of understanding of the ideas underpinning the algebraic procedure. In the next sections, I discuss the 
work of one small group, focusing on two 𝑎𝑥 + 𝑏 = 𝑐𝑥 + 𝑑	equations. 

 
1 Here is an example of a simple word problem: “Sylvain and Chantal have some hockey cards. Chantal has three cards 
and Sylvain has two cards. Their mother puts some cards in three envelopes and makes sure to put the same number of 
cards in each envelope. She gives one envelope to Chantal and two to Sylvain. Now the two children have the same 
number of hockey cards. How many hockey cards are inside each envelope?” (Radford, 2017, p. 18). 
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The equation 𝟐𝒙 + 𝟏 = 𝒙 + 𝟔		in the CSS and the ISS 
The two equations were given in the ISS. They are translations of a story in which two children have 
cards and envelopes. Each envelope has the same unknown number of cards, and both children have 
in total the same number of cards (see footnote 1). The exercise of translating stories of this type into 
the ISS was done in Grade 2 and continued in Grade 3. In this section I discuss the students’ dealings 
with the equation 2𝑥 + 1 = 𝑥 + 6 (Figure 1.1) and in the next section I discuss the equation 3𝑥 +
1 = 5 + 𝑥	(Figure 1.2). 

  

Figure 1. The equations 𝒂𝒙 + 𝒃 = 𝒄𝒙 + 𝒅 as presented to the students in the ISS 

Using a kit of envelopes and cards, the students were asked to make an equation and solve it, then 
draw their procedure. The idea was, hence, to have the students solve the equation first in the CSS, 
then using the ISS. The students made the equation in the CSS (Figure 2.1). Then, they drew the 
equation in the ISS. Elsa says: “We must remove that (she circled the card on the left side of the 
equation) so that there are just envelopes, do you remember? (Then she removes one card on the 
other side) 1, 1.” (Figure 2.2). The answer is found by the comparison method (i.e., the students 
compare the equal to the equal and associate the remaining parts of the equation: in this case, one 
envelope on the left side is equal to the envelope on the right; hence, the other envelope is equal to 
the five remaining cards). 

 

 

 

Figure 2. Solving the equation 𝟐𝒙 + 𝟏 = 𝟔 + 𝒙 in the CSS and the ISS 

The teacher arrives and asks the students to explain their procedure. The students construct again the 
equation in the CSS. They remove one card from each side of the equation. The teacher says: “You 
are in the process of isolating! . . . How many envelopes do you want on one side?” Puzzled by the 
question, the students look at each other. One moment ago, Elsa mentioned the idea of having 
envelopes on one side. The teacher’s intervention pushes the conversation further. On the one hand, 
the teacher acknowledges that the students are in the process of isolating the unknown. On the other 
hand, she raises a question that deals with something that has not been considered by the students. It 
is this unconsidered aspect of the simplification of the equation—a mathematical operation that would 
lead from 2𝑥 = 𝑥 + 5 to 𝑥 equal to something—that puzzled the students. 

1  Teacher: You want to know how many cards there are in ONE envelope (she points to the envelope 
several times when she says ONE) . . . First of all, you did this (she removes a card from 
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each side) you removed a card . . . Okay, what happens now? There are 2 envelopes 
(pointing to the envelopes on one side of the equation), then (pointing to the objects on the 
other side of the equation) 1 envelope and 5 cards. 

2  Cora: We counted all these (points to the cards). It's 5. So, it (pointing to 1 of the envelopes) should 
have 5 too (see Figure 3.1). 

3  Teacher: How do you know? 
4  Elsa: We are going to remove (she removes 1 envelope from the left side; see Figure 3.2). 
5  Teacher: You're removing 1 envelope?  
6  Elsa and Cora: Yes. (Elsa removes an envelope from the other side as well; Figure 3.3). 
7  Teacher: Why did you choose to do that?  
8 Cora: Because this (the sides of the equation) must be equal. 
9  Elsa: because we must remove; because there must be only 1 envelope left (she takes the envelope 

that is left) 
10  Teacher: Is it okay to remove 1 envelope and then 1 envelope? Is your equation still equal? 
11 Cora: Yes!  

   

 

 

Figure 3. The students and the teacher discussing the equation 𝟐𝒙 + 𝟏 = 𝒙 + 𝟔 

In Line 1 the teacher starts simplifying the equation as the students did. She says: “First of all, you 
did this” and removes one card from each side. Then, in an encouraging tone, she asks “What happens 
now?” In Line 2 Cora resorts to the comparison method, but the verbal articulation of ideas leaves 
important relations unaccounted for. These are the relations that the teacher asks for in Line 3. In Line 
4 Elsa starts removing one envelope from each side. The teacher wants to make sure that the students 
understand the idea behind the “removing” operation. So, in Line 7 she asks for reasons. In Lines 8 
and 9 the students offer two answers: Cora’s focuses on the conservation of the equality between both 
sides of the equation; Elsa’s focuses on the idea of ending up with one envelope. In Line 10 the 
teacher wants again to make sure that there is a clear understanding of the actions that are carried out 
to simplify the equation. When the teacher leaves, the students come back to the equation in the ISS 
and remove one envelope from each side (Figure 3.4). 

So far, the isolating-the-unknown procedure has necessitated the application of a key operation: 
removing equal things from both sides of the equation. In the next equation an additional 
mathematical operation is required. Let’s turn to the students’ investigation of this equation. 

The equation 𝟑𝒙 + 𝟏 = 𝟓 + 𝒙 in the CSS and the ISS 
The students tackle the equation 3𝑥 + 1 = 5 + 𝑥. They construct the equation in the CSS and, instead 
of solving it with the help of concrete materials, they draw the equation.  

Cora starts by removing one envelope from each side. After that, she removes one card from each 
side (Figure 4.1). 

12  Elsa:  You only removed 1, but there must be only 1 envelope left. That's a problem. (They think 
for a while; then Elsa continues). Four [cards], but there's not another envelope here (points 
to the right side of the equation). 
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13  Cora:  There are 4 cards left, that's 4, we must remove these cards (she circles the 4 remaining 

cards on the right side of the equation) . . . And here (she points to 1 of the remaining 
envelopes on the left side of the equation) there are 0 [cards]. 

14  Elsa:  Yes but look! If there is 0 [cards] in the envelope, this (pointing to the envelope on the right 
side of the equation) will be 4 and this (pointing to an envelope on the left side) will be 1 
[meaning perhaps 0]. But the 2 [envelopes] must have the same exact (she points to the 
drawing), the 2 [envelopes] must have the same number [of cards]. 

15  Cora:  (Explaining the idea again) We removed that (the 4 cards). 
16  Elsa:  Then, there are 0, but there must be some cards [in the envelope]. 
17  Cora:  Why? 
18  Elsa:  Here you have to remove this, here you remove this (points with her pen to her drawing) 

and you can't remove that [the 4 cards on the right side], because there are not 4 other 
[cards] here [on the left side] that you can remove . . . 

Here, the students find themselves in a new situation. While in the previous problem, removing the 
same number of cards and envelopes was sufficient to isolate the unknown, in this problem the 
“removing” operation is not enough. They end up with two envelopes on the left side of the equation 
and four cards on the right side. They cannot continue removing envelopes for, as Elsa notes in Line 
12, there are no more envelopes to remove on the right side. And “That's a problem.” Cora suggests 
removing the four cards on the left side, which will lead them to zero cards. She then assigns zero 
cards to one of the two envelopes on the left side, which means that there are four cards in the other 
envelope. Elsa points out two problems with Cora’s suggestion. First, she argues that all envelopes 
must have the same number of cards (Line 14). Second, simplifying entails removing the same things 
on both sides of the equation (Line 18). This requirement or condition is violated. 

The students reach an impasse. “On est en train de se chicaner pour la réponse” [“We are having an 
altercation over the response”]. They tried to call the teacher, but she was busy discussing with 
another group. I was videotaping this group; I removed my headphones and went to talk to the 
students. I suggested that they use the concrete material (envelopes and cards). The students 
constructed the equation again and proceeded to remove one card and one envelope on each side. 

19  Elsa:  There are still 2 envelopes left (see Figure 4.2). 
20  Mia:  Then, there are 2 (pointing to 2 cards) here (pointing to 1 of the envelopes) and 2 

(pointing to the 2 remaining cards) here (pointing to the other envelope; see Figure 4.3). 
21  Cora:  There must be 1 envelope! 
22  Elsa:  (She removes 1 envelope and moves the cards to the other side of the equation; see 

Figure 4.4)  

 
   

Figure 4. Discussing the solution of 𝟑𝒙 + 𝟏 = 𝟓 + 𝒙 in the CSS 

In Line 20 Mia suggests an idea. However, the idea is not taken into consideration by the other 
students. Perhaps because the idea is not framed within the kind of actions that the students recognize 
as legitimate in solving the equation. Yet, we see in Figure 4.4 that Elsa, in despair, removes one 
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envelope and transfers the cards to the other side of the equation, placing them underneath the 
envelope, twice breaking the "do the same on both sides" rule. Not finding a convincing way to 
proceed, Elsa (like Cora in Line 13) steps outside the boundaries of the algebraically thinkable that 
they have established so far. The situation once again became very tense as we saw in Line 18. Elsa 
says that they are still altercating and laughs. Cora says: “OK. We’ll do it again!” They remove one 
card and one envelope from each side of the equation. 

23  Elsa:  There are 4 [cards]. We must have just 1 envelope remaining. So, we must remove 1 
[envelope]; we don’t have a choice (she removes the envelope). 

24  Cora:  Yes, but if we remove 1 … we must remove something else (she points to the other side 
of the equation). 

They discuss for a while and come back to the simplified equation (2𝑥	 = 	4).  After looking 
attentively at the 4 cards and the 2 envelopes, Elsa says that she has an idea:  

25  Elsa:  Wait, wait. Here's my idea. Because we have 2 [cards] here (with each hand, she takes 2 
cards from the bunch of 4 cards; then, she slowly moves the 2 hands holding the cards 
and puts them in front of each of the envelopes; see Figure 5.1. When the cards arrive at 
their destination, she says) 2 in each envelope.  

  She immediately starts the explanation again: she slides the 4 envelopes as she did before, 
on one side of the equation. She says:  

26  Elsa:  Separate this [the 4 cards] into 2 (as she says this, she separates the envelopes; see 
Figure 5.2. She then slides them in front of each envelope); there are 2 in each envelope. 

    

Figure 5. Finding (again) how to solve the 𝟐𝒙 = 𝟒 equation 

Elsa’s demonstration is followed by Mia’s reaction: 
27  Mia:  This is what I said before, but you, you were . . . 
28  Elsa:  (completing Mia’s sentence) . . .  altercating! 
29  Mia:  . . .  you said, no, no . . . 
30  Elsa:  I am sorry, Mia! 

Cora makes the equation again and goes through the steps to isolate the unknown. When she reaches 
the equation 2𝑥 = 4, she says:  

31 Cora:  We are going to separate . . . (and slides the 2 cards towards 1 envelope and 2 cards towards 
the other envelope; see Figure 5.3). 

Mia is right in arguing that she suggested long before (Line 20, Figure 4.3) that each envelope has 
two cards. However, her suggestion was not articulated in terms of a separation of cards. In Elsa’s 
case, the solution appears first in an embodied way: “Wait, wait. Here's my idea. Because we have 2 
[cards] here . . . 2 in each envelope.” The few uttered words are accompanied by a complex set of 
grabbing and sliding actions that remain unqualified linguistically. The linguistic articulation appears 
when she starts again the process of solving the problem. She says: “Separate this into 2, there are 2 
in each envelope.” Although the importance of the kinesthetic dimension that accompanied the 
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problem-solving procedure does not disappear, the thematic articulation in language is much more 
sophisticated. The new mathematical operation is named “to separate.” This new operation is a 
precursor of what will later be known as the algebraic operation of division. The Arab mathematicians 
had a term for it: al-radd, decreasing the coefficient of the unknown to 1. 

In previous research we have found that at the precise moment of learning something, the students 
undergo a process where mathematical thinking becomes reorganized; what previously took many 
words and actions becomes reorganized and contracted: the students filter the necessary from the 
unnecessary and their semiotic activity becomes contracted. There is a semiotic contraction (Radford, 
2021). Here, we see the opposite process: in Line 26 Elsa adds actions and words to signify the 
emerging operation. There is a semiotic expansion that allows her and her teammates to better notice 
the operation and endow it with meaning.  

The students kept solving with their hands the equation in the CSS several times. It seems that seeing 
was not enough and that feeling with their hands and their bodies was necessary. Then, they drew 
their solution in the ISS. The new operation requires a sign to be expressed. Figure 5.4 shows that the 
students chose an arrow, which is reminiscent of the sliding action that makes the two cards 
correspond to each envelope. The sign is an icon of the action. 

Concluding remarks 
This article dealt with the topic of equations in early algebra. It focused on the way Grade 3 students 
dealt with some of the key algebraic ideas that underpin the simplification of equations. In the first 
part, I suggested that the characterization of algebra (a) as calculation with letters or (b) as focused 
on operations rather than on their results are both unsatisfactory. In the first case, the characterization 
falls short by limiting the scope of algebra; in the second case it fails by downplaying the complexities 
of arithmetic thinking (which is reduced to trivial calculations). Based on historical-epistemological 
considerations (Radford, 1995; 2001), I suggested a conception of algebra that stress the authenticity 
of denotating unknown magnitudes in various ways and emphasizes the analytic-deductive nature 
that underpins algebraic inquiries. If we know that second degree equations have at most two 
solutions, it is not because we guessed the solutions, it is because they were deduced.  

Starting from these premises, the Grade 3 teaching-learning activity was didactically organized 
around the use of two semiotic systems: the CSS and the ISS. The excerpts analyzed here started with 
a classroom general discussion around different methods to solve the equation 3 + 𝑥 = 7. According 
to the definition of algebra suggested in the first section of this paper, the solution of equations 𝑎𝑥 +
𝑏 = 𝑐 does not include the operation of the unknown. As a result, in solving those equations the 
students have not stepped yet into the realm of algebra (Filloy & Rojano, 1987). However, the 
investigation of the equation 3 + 𝑥 = 7	 provided the students with an opportunity to continue 
familiarizing themselves with the isolating-the-unknown procedure that they encountered in Grade 2. 
In this sense the equation 3 + 𝑥 = 7 was envisioned rather as a propaedeutic step towards tackling 
equations of the type 𝑎𝑥 + 𝑏 = 𝑐𝑥 + 𝑑 algebraically, something that the students did in the second 
part of the teaching-learning activity. We can see in Figures 3.2 and 3.3 the moment at which Elsa 
applies the al-muquabāla or removing operation that was previously applied to the constants in 
solving the equation 3 + 𝑥 = 7 to the equation 2𝑥 + 1 = 𝑥 + 6. The “removing” operation now 

594



 

 

acquires a new and more developed meaning. It requires seeing the unknown and the equation under 
a new light. It is this new aspect of the mathematical activity that leads the teacher, in Line 10, to ask 
two fundamental questions: “Is it okay to remove 1 envelope and then 1 envelope? Is your equation 
still equal?” More generally, the CSS- and ISS-based teaching-and-learning activity made room for 
meaning-making processes out of which the Grade 3 students to generate, in their work with the 
teacher, two important algebraic ideas that underpin the simplification of equations: “removing” 
(removing equal terms from both sides of the equation) and “separating” (i.e., reducing the coefficient 
of the unknown to 1), those operational ideas that Arab mathematicians referred to as al-gabr / al-
muqābala and al-radd, respectively (Oaks & Alkhateeb, 2007). The emergence of these sensuous 
and embodied operations served as foundational blocks for the students’ encounter with algebraic 
alphanumeric symbolism, which happened one year later, when they were in Grade 4. 
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